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Synthesis of (purin-6-yl)acetates and 6-(2-hydroxyethyl)purines
via cross-couplings of 6-chloropurines with the Reformatsky reagent
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Abstract—A novel approach to the synthesis of 6-(2-hydroxyethyl)purines was developed based on Pd-catalyzed cross-coupling
reactions of 6-chloropurines with the Reformatsky reagent followed by reduction by NaBH4 and treatment with MnO2. This meth-
odology was successfully applied to the syntheses of 6-(ethoxycarbonylmethyl)- and 6-(hydroxyethyl)purine bases and nucleosides.
� 2007 Elsevier Ltd. All rights reserved.
Several types of purines bearing C-substituents at C-6
are biologically active. 6-Methylpurine and its ribo-
nucleoside are highly cytotoxic1 and its liberation by
purine nucleoside phosphorylases from its non-toxic
deoxyribonucleoside was proposed as a novel principle
in the gene therapy of cancer.2 6-Aryl- and 6-hetaryl-
purine ribonucleosides exert3 significant cytostatic
effects and, moreover, some 6-hetarylpurine ribonucleo-
sides exhibit4 potent antiviral activity against HCV.
Little was known about the biological activity of purines
bearing functionalized C-substituents until recently
when we reported the syntheses and cytostatic effects
of 6-(hydroxymethyl)-,5 6-(fluoromethyl)-,6 6-(difluoro-
methyl)-7 and 6-(trifluoromethyl)purine8 ribonucleo-
sides. Very recently, substituted 6-(2-aminovinyl)- and
6-(2-aminoethyl)purine derivatives were also found to
exhibit cytostatic effects.9

Carbon substituents at C-6 of purines are efficiently
introduced by cross-coupling reactions of 6-halopurines
with various organometallics.10 Functionalized C-sub-
stituents usually require suitable protection of the corre-
sponding organometallics. So far, we have succeeded
with the synthesis of 6-(hydroxymethyl)purines via cou-
pling of acyloxymethylzinc iodides5 and of purin-6-yl
amino acids via coupling of protected amino acid
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organometallics.11 For b-functionalized C-substituents
the corresponding organometallics would not be stable
due to b-elimination and, therefore, an alternative strat-
egy based on conjugate additions of nucleophiles to 6-
ethynyl- or 6-vinylpurines has been developed.9,12 Here
we report on an alternative strategy for the introduction
of b-functionalized substituents via cross-coupling of
halopurines with the Reformatsky reagent.

Purin-6-yl acetates were prepared previously in moder-
ate yields by heterocyclization of pyrimidines,13 by aryl-
ation of malonates14 or ethyl acetoacetate15 with 6-halo-
or 6-tosyloxypurines followed by decarboxylation or
cleavage of acetoacetate. The former method is labori-
ous,13 while the latter two approaches14,15 were not
reproducible reliably in our hands due to side reactions.
Since these compounds are apparently useful intermedi-
ates for further functionalization, we have tried to devel-
op a practical new approach for their syntheses based on
Pd-catalyzed cross-coupling reactions of halopurines
with the Reformatsky reagent under mild conditions.

Although the first Pd-catalyzed arylation of aryl halides
was reported16 in 1979, only the development of a new
generation of sterically hindered phosphine ligands
enabled application of this reaction to a wide range of
aryl halides under mild conditions.17 Therefore, our first
study focused on optimization of the catalytic system.
Reactions of BrZnCH2COOEt (1) with model 9-benz-
yl-6-chloropurine (2a) to give (purin-6-yl)acetate 3a
were performed using several types of phosphine ligands
with varying ratios of Pd/ligand and amount of reagent
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Scheme 1. Optimization of the cross-coupling of 6-chloropurine 2a

with the Reformatsky reagent 1.

Table 1. Optimization of the cross-coupling of 6-chloropurine 2a with
the Reformatsky reagent 1

Entry Pd2dba3

(%)
Ligand Ligand

(%)
1

(equiv)
Yield
of 3a

(%)

1 1 P(o-tol)3 4 2 0
2 1 P(t-Bu)3ÆHBF4 2 2 14
3 1 bpdbpa 4 2 31
4 2 bpdbp 8 2 48
5 2 bpdbp 8 4 91

a (2-Biphenyl)di-tert-butylphosphine.

Table 2. Cross-coupling of the Reformatsky reagent with chloropurine
derivatives 2a–f

Entry Halopurine Product Yield (%)

1 2a 3a 91
2 2b 3b 76
3 2c 3c 75
4 2d 3d 97
5 2e 3e 67
6 2f 3f 96
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(Scheme 1, Table 1). Reformatsky reagent 1 was gener-
ated from ethyl bromoacetate and zinc dust in analogy
with the procedure published18 for other organozincs
using preactivation of zinc by trimethylsilyl chloride
and 1,2-dibromoethane. While the use of P(o-tol)3

ligand did not give any reaction, the use of P(t-Bu)3Æ
HBF4 showed more promising reactivity and the best
ligand proved to be (2-biphenyl)di-tert-butylphosphine
(bpdbp) where the yield was significantly higher (Table
1, entries 1–3). Using the superior ratio 1:4 of Pd2dba3

and ligand and an increased amount of organozinc
reagent 1 (4 equiv), an almost quantitative yield of 3a
was obtained (Table 1, entry 5).19

The optimized conditions were then applied to the
syntheses of other derivatives. THP-Protected 6-chloro-
purine base 2b and both toluoyl and silyl protected
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Scheme 2. Cross-coupling of the Reformatsky reagent with chloro-
purine derivatives 2a–f.
ribo- and 2 0-deoxyribonucleosides 2c–2f reacted with
organozinc 1 generally very well giving the correspond-
ing purinylacetates 3b–3f in good to excellent yields
(Scheme 2, Table 2). The silyl protected nucleosides 3d
and 3f were obtained in significantly better yields com-
pared to toluoyl-protected 3c and 3e probably due to
better stability under work-up conditions.

Having developed an efficient and practical methodol-
ogy for the synthesis of (purin-6-yl)acetates, we next
explored the possibility of reduction of the acetate ester
group to a hydroxyethyl group, since 6-(hydroxy-
ethyl)purines are interesting homologues of biologicaly
active 6-(hydroxymethyl)purines.5 Several types of com-
plex metal hydrides or boranes, various solvents and
conditions were investigated for the reduction of model
acetate 3a (Scheme 3, Table 3). Surprisingly, this reduc-
tion was very problematic and many of the reagents did
not give any reaction or led to decomposition of the
starting material (entries 1–3). Only the use of NaBH4,
DIBAH or LiAlH4/AlCl3 gave isolable quantities of
desired product 4a. In aprotic solvents suitable for
acyl-protected nucleosides, no efficient reduction condi-
tions were found.
N N
Bn

conditions N N
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Scheme 3. Optimization of the reduction of 3a.

Table 3. Optimization of the reduction of 3a

Entry Hydride
(equiv)

Solvent Temperature
(�C)

Yield
of 4a (%)

1 Other hydridesa THF 0–60 —
2 NaBH4 (4) DMF 40 decomp.
3 BH3ÆMe2S (6) THF Reflux decomp.
4 NaBH4 (3) THF Reflux 5b

5 DIBAH (1) Toluene 0 15
6 LiAlH4/AlCl3 (3/1) THF 0 26
7 DIBAH (3) THF/tol 0 39
8 NaBH4 (10) Dioxane 60 40
9 NaBH4 (10) EtOH 50 54

10 NaBH4 (10)
followed by MnO2

EtOH rt 82

a LiAlH4, LiBEt3H, synhydride, L-Selectride or 9-BBN.
b The rest was unreacted compound.
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Scheme 4. Preparative reductions of purines 3a–d,f.

Table 4. Preparative reductions of purines 3a–d,fa

Entry Ester Product Yield (%)

1 3a 4a 82
2 3b 4b 65
3 3c 4c 0b

4 3d 4d 74
5 3f 4f 71

a Conditions: (1) NaBH4 (10 equiv), EtOH, rt, 12 h; (2) MnO2,
CH2Cl2, rt, 1 h.

b Decomposition.

Table 5. Deprotection of purines and nucleosides 3 and 4

Entry Protected compd Conditionsa Product Yield (%)

1 3b A 3g 93
2 4b A 4g 75
3 3d B 3h 96
4 3f B 3i 65
5 4d B 4h 92
6 4f B 4i 69

a Method A: Dowex (H+), EtOH, 70 �C, 3 h; B: Et3NÆ3HF, THF, rt,
18 h.
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The best reducing agent was NaBH4 in ethanol, which
gave ca 50% preparative yield of 4a. This product was
accompanied by an unstable side product, which was
partly identified (NMR) as a 1,6-dihydropurine formed
by over-reduction. Therefore, the reaction mixture after
reduction was treated with MnO2 to re-oxidize the
purine ring and this modification gave 4a in a good yield
of 82%. This procedure20 was then applied to the reduc-
tions of protected bases and nucleosides 3b–d,f (Scheme
4, Table 4). The toluoyl groups were not stable during
the reduction in ethanol (entry 3) and therefore only
the THP-protected purine 3b and silylated nucleosides
3d,f were successfully reduced to give the protected
6-(2-hydroxyethyl)purine base 4b and nucleosides 4d,f
in good yields.

The THP-protecting group in 6-(ethoxycarbonyl-
methyl)purine 3b and 6-(hydroxyethyl)purine 4b was
cleaved21 using a catalytic amount of Dowex 50 (H+

form) in ethanol at an elevated temperature for 3 h
(Scheme 5) to give the corresponding free 9H-purine
bases 3g and 4g (Table 5, entries 1 and 2). The silyl-
ated 6-(ethoxycarbonylmethyl)purine 3d and 3f and
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Scheme 5. Deprotections of purines and nucleosides 3 and 4. Reagents
and conditions: for b (i) Dowex (H+), EtOH, 70 �C, 3 h; for d,f (ii)
Et3NÆ3HF, THF, rt, 18 h.
6-(hydroxyethyl)purine 4d and 4f nucleosides were
deprotected11b with Et3NÆ3HF (1.5 equiv for each silyl
group) in THF. Free purine nucleosides 3h and 3i and
4h and 4i were obtained at room temperature after
18 h in good yields (Table 5, entries 3–6).

In conclusion, a novel efficient approach to (purin-6-
yl)acetates was developed based on the Pd-catalyzed
reactions of 6-chloropurines with the Reformatsky
reagent. The acetates could be further reduced to a novel
6-(hydroxyethyl)purine derivatives. Ongoing applica-
tions of this methodology and follow-up functional
group transformations in the syntheses of a large series
of new interesting modified purine bases and nucleosides
for biological activity screening and other biological
applications will be published in due course.
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21. Hocek, M.; Holý, A. Collect. Czech. Chem. Commun.
1995, 60, 1386–1389.


	Synthesis of (purin-6-yl)acetates and 6-(2-hydroxyethyl)purines via cross-couplings of 6-chloropurines with the Reformatsky reagent
	Acknowledgements
	References and notes


